MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis

Author:  ["Catarina P. Samora","Binyam Mogessie","Leslie Conway","Jennifer L. Ross","Anne Straube","Andrew D. McAinsh"]

Publication:  Nature Cell Biology

CITE.CC academic search helps you expand the influence of your papers.

Tags:  Mitosis   Mitotic spindle   Biological

Abstract

Correct positioning of the mitotic spindle is critical to establish the correct cell-division plane. Spindle positioning involves capture of astral microtubules and generation of pushing/pulling forces at the cell cortex. Here we show that the tau-related protein MAP4 and the microtubule rescue factor CLASP1 are essential for maintaining spindle position and the correct cell-division axis in human cells. We propose that CLASP1 is required to correctly capture astral microtubules, whereas MAP4 prevents engagement of excess dynein motors, thereby protecting the system from force imbalance. Consistent with this, MAP4 physically interacts with dynein–dynactin in vivo and inhibits dynein-mediated microtubule sliding in vitro. Depletion of MAP4, but not CLASP1, causes spindle misorientation in the vertical plane, demonstrating that force generators are under spatial control. These findings have wide biological importance, because spindle positioning is essential during embryogenesis and stem-cell homeostasis. Astral microtubules emanating from the spindle poles engage force-generating proteins such as dynein at the cell cortex to regulate spindle positioning. McAinsh and colleagues show that the microtubule-associated proteins MAP4 and CLASP1 control the interactions of astral microtubules at the cell cortex to ensure correct spindle positioning.

Cite this article

Samora, C., Mogessie, B., Conway, L. et al. MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis. Nat Cell Biol 13, 1040–1050 (2011). https://doi.org/10.1038/ncb2297

View full text

>> Full Text:   MAP4 and CLASP1 operate as a safety mechanism to maintain a stable spindle position in mitosis

Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells

The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm durin